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Abstract—The computing community is in the midst of a
disruptive architectural change. The advent of manycore and
heterogeneous computing nodes forces us to reconsider every
aspect of the system software and application stack. To address
this challenge there is a broad spectrum of approaches, which we
roughly classify as either revolutionary or evolutionary. With the
former, the entire code base is re-written, perhaps using a new
programming language or execution model. The latter, which
is the focus of this work, seeks a piecewise path of effective
incremental change. The end effect of our approach will be rev-
olutionary in that the control structure of the application will be
markedly different in order to utilize single-instruction multiple-
data/thread (SIMD/SIMT), manycore and heterogeneous nodes,
but the physics code fragments will be remarkably similar.

Our approach is guided by a set of mission driven applications
and their proxies, focused on balancing performance potential
with the realities of existing application code bases. Although
the specifics of this process have not yet converged, we find that
there are several important steps that developers of scientific and
engineering application programs can take to prepare for making
effective use of these challenging platforms. Aiding an evolution-
ary approach is the recognition that the performance potential
of the architectures is, in a meaningful sense, an extension of
existing capabilities: vectorization, threading, and a re-visiting
of node interconnect capabilities. Therefore, as architectures,
programming models, and programming mechanisms continue to
evolve, the preparations described herein will provide significant
performance benefits on existing and emerging architectures.

Index Terms—scientific applications; high performance com-
puting; parallel architectures.

I. INTRODUCTION

High Performance Computing (HPC) architectures of the
coming decade will be significantly different in structure and
design than today. We have already seen clock rates and node
counts stabilize, and core counts increase. Now emerging are
increased vector lengths, greater levels of hardware-enabled
concurrency and new memory architectures that are strongly
non-uniform and may soon lose cache coherency. Adoption
of new, potentially immature, technologies presents many
challenges including hardware reliability, scalability and, in
the case of many proposed technologies, programmability and
performance portability. Since proposed designs represent a
radical departure from existing petascale technologies, new
research projects have started in order to identify and develop
solutions for many of these problems. One of the greatest
concerns facing programs such as the U.S. Department of

Energy’s Advanced Simulation and Computing (ASC) ini-
tiative in the United States is how best to port full appli-
cations that have been developed over nearly two decades.
These applications consist of millions of lines of source
code implemented in a variety of programming languages
(some of which use non-standard features) and utilize tens
of supporting libraries. These applications codify significant
bodies of knowledge which have developed over multiple
generations of scientists. Alongside the demands of porting
such large codes are the continued requirements associated
with on-going programmatic-level work. Put simply, science
discovery cannot stop while applications and algorithms are
rewritten for future systems and re-validated to ensure correct
scientific output.

In this context, many in the HPC industry question how full
science applications will be ported to new architectures. On
one side of the debate is a view that significant application
rewrites will be required in order to obtain the full potential
performance of new hardware. On the other side is a view,
described above, that the pedigree of existing code and the
complex science which it embodies must be gradually evolved
and augmented over time for new platforms so that scientific
delivery can continue and the cost associated with porting
is reduced or at least amortized. We regard these views as
the revolutionary and evolutionary approaches to Exascale,
respectively.

The work reported in this paper (and in expanded
version in [5]) describes an initial series of experiments
performed in the evolutionary context. We note that
studies using revolutionary approaches are also underway
and will be reported in future publications. Our work
focuses on three levels of porting which we expect to be
commonplace choices for the modification of codes on future
platforms: (i) optimization within the processor core, typically
investigating the improvement of vector-level parallelism and
the modification of code to exploit near memory subsystems;
(ii) optimization of code for the compute node as a whole
using techniques such as thread-level parallelism, introduction
of compiler directives to drive compute offloading, data
motion reduction and adaptation for node-level topologies
such as non-uniform memory architecture (NUMA) domains,
and, (iii), optimization of inter-node communication to
improve message pipelining or to utilize novel features in



advanced network interconnects.

The specific contributions of this work are:
• Documented porting and analysis of several key San-

dia mini-applications (miniapps) running on advanced
computing architectures. The use of miniapps from the
Mantevo suite enables us to draw conclusions that are
relevant to production codes used by the National Nu-
clear Security Agency (NNSA) and ASC programs. We
employ novel technologies to aid in this porting including
traditional OpenMP pragmas as well as introduction of
OpenACC directives to enable execution on GPUs, and
intrinsic functions to improve levels of compiler vector-
ization;

• Benchmarking the effects on runtime of changes in
hardware and environment configuration, in particular
changes in memory bandwidth, MPI-rank placement and
the varying use of threads/MPI ranks to use available
processor resources. Such studies enable us to investigate
the opportunity for optimizations outside of traditional
changes in source code and reflects our on-going view
that optimization of runtime encompasses a wide range
of options including software configuration as well as
design. We note that such options can have significant
impact at scale and demonstrate the effect of such options
for runs of over 16,000 processor cores;

• Highlighting of several architectural parameters which
serve as bottlenecks or limits to further improvements
in performance. A natural effect of early generations of
hardware is that a number of optimization opportunities
are likely to still be present in the design. In our work
we use miniapps to identify these and discuss how, when
addressed, these may provide improvement in runtime
performance.

Non-uniform levels of maturity of the systems used for this
work prevents meaningful direct hardware-to-hardware com-
parisons, so we instead provide relative measures of improve-
ment for each experiment. As the hardware and software
stacks associated with the platforms, we will report direct
performance comparisons.

A. Related work

The number and breadth of challenges associated with prepar-
ing for multi-petascale and exascale-class computing are sig-
nificant and have helped to create a rich set of academic
investigations touching on comparison of computer architec-
tures [3], [20] optimization for specific classes of hardware [8],
[12] and programming languages and mechanisms [2], [14],
[22], [25].

II. PROGRAMMING MODELS AND ENVIRONMENTS

Programming models (abstractions used to reason about pro-
gram design and implementation) and programming envi-
ronments (compilers and tools used to implement software,
correlated in design to one or more programming models)
are some of the most challenging and dynamic elements on

the path to exascale computing. Single program multiple data
(SPMD) built on top of MPI has by far been the dominant
programming model and environment pair since the emergence
of distributed memory computing two decades ago. There
is overwhelming evidence that single-level SPMD (statically
assigning a process per core) is insufficient to achieve optimal
performance. Even more importantly, this approach will not
scale with the performance potential of future systems. If we
are going to continue tracking future performance trends, we
need to augment or replace existing strategies.

Revolutionary approaches in this area arguably include
Chapel [13], ParalleX [14] and Swarm [2], since these lan-
guages or execution models, or both, would require a complete
redesign of an existing application. Although future systems
may demand such efforts, most application teams are using
a more evolutionary approach, sometimes called MPI+X,
by combining SPMD (via MPI) with one or more node-
level programming environments such as OpenMP [11], Intel
Threading Building Blocks (TBB) [24], CUDA [23] or C++11
threads.

Although MPI+X may appear incremental, it is in fact very
challenging to implement. In order to successfully scale on
current and future heterogeneous and manycore nodes, the
computational kernels of an existing (MPI) application must be
redesigned to support dynamic partitioning and scheduling of
work by the node-level runtime system. Typically this is most
easily done by encapsulating kernels in stateless functions that
can be parametrized to dynamically execute some runtime-
selected portion of work such that, when scheduled to a
processing element, the computation is performed efficiently.
All node-level programming models and environments are
compatible with this approach and some, such as TBB and
CUDA, explicitly require it.

Interestingly, by going through the above refactoring pro-
cessing, we not only make MPI+X work well, but we position
ourselves well for any future programming and execution
model. The effort of exposing and encapsulting parallelizable
computations in this manner is intrinsically valuable. Fur-
thermore, by optimizing node-level performance for runtime
systems such as CUDA, we also move in the direction of
hiding latency via task concurrency. Optimizing occupancy
rates in CUDA is a harbinger of the kind of reasoning needed
for efficient use of ParalleX and Swarm.

III. EXPERIMENTAL PLATFORMS

We employ a breadth of architectures in pursuit of preparing
application codes for exascale: Teller, a cluster of AMD Llano
Fusion APU processors; Cielo, a capability-class Cray XE6
supercomputer, and Curie, a small installation of Cray XK6
nodes. Additional machines are used for experiments which
require hardware or BIOS reconfiguration in order to reduce
impact to other system users.

While these machines are not a complete set of prospective
future architectures, they provide a distinct set of important
configurations and characteristics which we expect future
hardware systems to contain.
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Fig. 1. Cray X-Series Node Architectures

Each architecture meets our requirement of running existing
MPI applications through execution on conventional commod-
ity processor cores, requiring only recompilation. However, in
order for the potential performance of each platform to be
realized it is necessary to augment the code with additional
programming languages or models (including OpenMP[11],
OpenACC [1], and OpenCL [16]) that can target the special-
ized compute hardware within.

1) AMD Fusion (“Teller”): Teller is a 104-node cluster
of single-socket AMD A8-3850 Llano Fusion APU nodes.
Each APU comprises four K-10 AMD x86-64 cores running
at 2.90GHz. Cores have private 64kB L1 instruction and data
caches and a 1MB level-2 (giving a 4MB L2 in total). The
GPU portion of the APU is a modified 400-core Radeon HD
6550D which runs at 600MHz. GPU cores are 5-way SIMD. In
order to enable the study of memory performance, 100 cluster
nodes contain 16GB DDR3 memory clocked at 1600MHz
and 4 nodes contain 8GB DDR3 memory at 1866MHz. All
nodes are equipped with a single 256GB Micro C400 SSD
storage device. The machine interconnect employs QLogic
QSFP QDR InfiniBand.

2) Cray XE6 (“Cielo”): Cielo, the latest Advanced Sim-
ulation and Computing (ASC) capability machine, consists of
9,216 nodes, of which 8,944 are compute nodes and 272 are
service and I/O processing nodes. Although not technically
a testbed system since the architecture is widely available,
Cielo provides some new capabilities and hardware features
which we expect will be extended and refined in future
architectures. Each Cielo node consists of two oct-core AMD
Opteron Magny-Cours processors connected via HyperTrans-
port 3 links. Each Magny-Cours processor is divided into two
memory regions (see Figure 1(a)), or “NUMA nodes”, each
consisting of four processor cores. Nodes are connected using
Cray’s Gemini 3D torus high-speed interconnect. A Gemini
ASIC permits connectivity of two compute nodes each with a
dedicated HyperTransport-3 connection.

3) Cray XK6 (“Curie”): The XK6 is the latest refinement
to the X-family of machines developed by Cray. In this new
series one processor is removed from each compute node and
replaced with an NVIDIA Tesla-series GPU using a PCI-
Express Gen-2 bus for connectivity (see Figure 1(b)).

At the time of writing the GPU used for node design is an
NVIDIA “Fermi”-class GPU with 6 GBytes of GDDR5 mem-

ory and 16 streaming multiprocessors (SM), each containing
32 thread processing cores. are provided on the GPU card,
enabling high speed transfers to/from the on-chip compute
units. The Curie testbed system consists of 52 nodes, with
AMD Opteron 2.1GHz 16-core Interlagos 6272 processors and
32GB of system memory. The Interlagos is also of interest in
our studies since it utilizes the recently announced Bulldozer
core in which a core-pair each have two integer processing
units (one per core) but a unified floating-point pipeline which
is intended to reduce cost and power consumption.

IV. OVERVIEW OF THE MANTEVO PROJECT

The Mantevo project [17] provides a set of proxies, or
“miniapps,” which enable rapid exploration of key perfor-
mance issues that impact a broad set of scientific applications
of interest to the ASC and broader HPC community. Man-
tevo miniapps are tools1 with uses throughout the co-design
space [15]. They are intended to be fluid and a mechanism to
explore issues relating to hardware performance, programma-
bility, porting, etc. As part of the on-going work in developing
miniapps under Mantevo, a comprehensive initial validation
exercise [4] has recently been conducted to ensure the first full
release of codes is able to provide strong behavioral correlation
to parent physics and engineering application currently in use.

Unlike a benchmark, the result of which is a metric to be
ranked, the output of a miniapp is a richer set of information,
which must be interpreted within some, often subjective,
context. We distinguish this from a compact-application whose
purpose is to replicate a complex domain-specific behavior
being used in a parent application. Miniapps are designed
specifically to capture some key performance issue in the
full application but to present it in a simplified setting which
is amenable to rapid modification and testing. Note that
this is also distinct from a skeleton application, which is
typically designed to focus on inter-process communication
often producing a “fake” computation. Miniapps instead create
a meaningful context in which to explore the key performance
issue. Within many of the ASC programs, miniapps are
developed and owned by application code teams; are limited
to O(1K) source lines of code (SLOC) and are intended
to be modified with the only constraint being the continued
relevance to parent application.

1http://mantevo.org

http://mantevo.org


Mantevo miniapps provide base sequential reference im-
plementations written in either C, C++, or Fortran, with
optional parallelization configured using MPI and OpenMP.
Additional hybrid implementations are provided for explo-
ration using technologies such as CUDA, OpenCL, TBB, Cilk
Plus, qthreads, and Chapel.

In this work we employ three principle Mantevo miniapps:
(i) miniMD, a representation of a Lennard-Jones molecular-
dynamics problem used in the LAMMPS parent application;
(ii) miniFE, a finite-element miniapp which includes a finite-
element assembly step as well as a solving phase using the
CG method (representative of the Charon parent code), and
(iii) miniGhost, a bulk-synchronous stencil code that replicates
the behavior of finite difference and finite volume algorithms.
For the purposes of this work, miniGhost is configured to
represent the behavior of the CTH shock-hydro application
used at Sandia.

V. METHODOLOGY
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Fig. 2. Steps in an Evolutionary Path to Exascale Readiness

In this paper we document our experiences with attempting
an evolutionary migration of code from existing petascale
machines to exascale-class prototype hardware. The focus is
therefore on maintaining as many of the existing investments
in code as can be productively retained and, where possible,
adapting the structure for new classes of hardware. Towards
this end have empirically found our code modifications follow
a largely similar path regardless of the hardware technology
being employed. Figure 2 represents our migration strategy
that starts with our existing code and proceeds through a series
of steps to port and optimize this for future systems. In practice
some of these steps may occur in parallel or out of the order
described. The principle steps of our porting have so far been
the following: 1) Vectorization 2) Threading 3) Tuning for the
Compute Node and 4) MPI/Inter-Node Parallelism

The stages of this process capture our intent to introduce
improved levels of parallelism into our code which will be
essential for application performance in the coming decade.
Whilst the specifics of how this parallelism is presented to
the compiler or the machine are unique to each hardware
platform, the locating of parallelism is primarily a property of
the algorithm being used. Our experience is that the knowledge
of parallelism obtained through this process can therefore
be re-used between different compute architectures and pro-
gramming models reducing the time and cost associated with
porting.

VI. CASE STUDY: INITIAL PORTING OF MANTEVO
MINI-APPLICATIONS TO FUTURE ARCHITECTURES

In this last section of the paper we describe a series of short
case studies which describe the value of mini-applications in
assessing the capabilities and characteristics of future com-
puting architectures and programming models. In so doing we
are able to survey state of the art prototype computing archi-
tectures and provide initial commentary on how applications
may be mapped to them using evolutionary modifications to
the application. In order to separate the various levels of tuning
being conducted, our results are split into three sections: (1)
optimization within the processor core; (2) optimization within
a whole compute node and, (3), optimization between compute
nodes.

In this section we use the term core, processor, and node
in a flexible context since precise terminology is still being
refined throughout the community. For purposes herein, we
view a core as being as a unit which is capable of performing
calculation including traditional processor cores or lightweight
cores as found in new hardware types such as a GPU; we
view a processor as essentially being a socket and a node is
a network endpoint.

A. Processor Core Performance

Future computing hardware is expected to provide increased
parallelism in the processor core through the availability of,
and increased width of, vector registers which are able to
perform a single instruction over multiple pieces of data
simultaneously. With the introduction of MMX instructions
by Intel in 1995 and subsequent additions in the form of
SSE and latterly AVX, many of the available floating-point
operations in commodity processors require codes to exploit
high levels of data parallelism in order to achieve a high
proportion of peak chip performance. A well tuned compiler
can very often detect opportunities for vectorization providing
the code is structured in a manner that the compiler can safely
determine the introduction of vectored instructions will not
violate the original statement ordering. Where code control is
complex or inter-statement dependencies exist, compilers are
often unable to generate vectorized code resulting in slower
execution. One potential approach to addressing this issue is
for the programmer to employ manual vectorization through
the introduction of intrinsic operations – a library of routines
which communicate how the developer would like vector-
ization to occur. Such code constructs allow developers to
easily express low-level vector parameters and data operations
that either expand directly to assembly instructions or provide
programmer intent to the compiler allowing it to manipulate
these statements into vectorized operations. Typically not for
the faint of heart, we apply this approach herein in order to
illustrate the potential performance advantages with a view
that maturing compiler technology may provide additional
opportunities for vectorization in the future and that the
performance identified helps us to assess what the hardware
may in fact be capable of.



TABLE I
SPEEDUP OF MANUAL VECTORIZATION FOR MINIMD FORCE

CALCULATION AND FULL APPLICATION RUNTIME.

Force Total
(Speedup (x)) (Speedup (x))

AMD A8 3850 APU, 2.90GHz, SSE4a
Single Precision 1.26 1.21
Double Precision 1.56 1.49
Intel Westmere 5690, 3.47GHz, SSE4.2
Single Precision 1.57 1.43
Double Precision 1.42 1.33
Intel Sandy Bridge, 2.60GHz, AVX
Single Precision 1.70 1.49
Double Precision 1.61 1.43
Intel Ivy Bridge (Core i7), 3.40GHz, AVX
Single Precision 1.84 1.64
Double Precision 1.91 1.75

Our initial inspections into poorer than expected perfor-
mance of miniMD on commodity processors has shown that
the force compute loop (which is responsible for up to 90%
of serial runtime) cannot be vectorized due to the complex
pointer behavior being employed as well as sparse operand
loads from memory. The use of double pointer indirection
to map data structures into the compute kernel prevents the
compiler from determining whether vector instructions can be
utilized without violating ordering constraints despite a valid
vectorization being possible from an algorithmic perspective.

The force function computes the interaction forces between
each pair of atoms that exist in a specific neighbor list. Due
to the sparse nature of the atom information and the condition
operations associated with identifying whether the atom pair
is within a cut-off zone, automatic vectorization of this code
is particularly challenging. However, the high proportion of
execution associated with the function makes this a candidate
for optimization. In order to address the poor level of vector-
ization the main force compute loop was instrumented with
vector intrinsic operations enabling the compiler to generate
code with increased levels of vectorization. Table I shows
the speedup obtained through the use of SSE4.2 and AVX
intrinsic operations on several processors. Although the Ivy
Bridge processor is not a server grade processor we are using
high-end desktop processors to provide insight to future server
versions of the processor.

SSE provides a 128-bit wide vector unit (four single-
precision operands or two double-precision operands) and
AVX provides 256-bits enabling a maximum speedup of
floating point calculations equivalent to the vector width (up
to 8x in the case of single precision AVX values). Although
each operation within the force kernel is vectorized using an
intrinsic operation, the speedup obtained is lower than the
theoretical maximum as some instructions over vector registers
are serialized within the processor core and other architectural
bottlenecks such as memory operations are not executed in
parallel. The output of the vector intrinsic instrumented codes
is not identical to non-vectored source as the operations may
lead to a change in rounding effects, but has been thoroughly
tested to ensure the results are acceptable to domain scientists.

Our experience of rounding has shown that the introduction
of intrinsics can yield subtle changes in output and even
execution behavior and therefore careful design and post-
implementation testing are required.

As we look forward the coming arrival of the Intel MIC
architecture with an increased vector width, we predict that
the addition of intrinsics to key application kernels may
become more commonplace. We further expect the structure
of the refactored intrinsic force kernel to be reusable on MIC
platforms moving forward with only minor changes to adapt
to the wide vector registers. Within the evolutionary context,
adaption of key kernels using intrinsics therefore allows us to
migrate applications to new platforms and provide significant
improvement in execution speed with changes isolated to only
short sections of code. Although intrinsics are not available
for the GPU in the same sense, the knowledge of algorithm
parallelism is fundamental to informing us of future ports to
such architectures. Furthermore, many of the improvements
being prepared for future exascale-class platforms can be
reused on a number of our existing systems.

B. Intra-node performance

Effectively exploiting the performance potential provided by
increasingly complex node architectures is seen as one of
the major challenges for on-going code development. In this
section we provide three examples illustrating several issues
that the application developer may need to consider on an
increasingly complex compute node. Specifically we focus
on : (1) the porting of miniGhost to NVIDIA GPUs using
the recently announced OpenACC compiler directive toolkit,
demonstrating initial identification of parallelism in the al-
gorithm and the performance obtained from OpenACC; (2)
the porting of the miniFE Finite Element assembly phase to
NVIDIA GPUs using CUDA which identifies the high level
of register spilling present in the code and discusses how
this will be addressed in future GPU systems and, finally,
(3) a study of miniFE assembly and solve phase sensitivity
to changes in memory bandwidth. The issues raised in these
small studies demonstrate the value of mini-applications in
identifying potential performance bottlenecks or sensitivities.
The information being obtained through this work is able
to drive analysis of larger applications as well as hardware
and can have real impact in informing our hardware selection
choices and subsequent optimization activities.

1) Finite difference stencils: Computation in miniGhost is
based on a triply nested loop, whereby each point in the
domain is updated as a function of the average over adjacent
points. The simplicity of this computation and the ability to
easily configure varying levels of compute complexity let us
expose and explore issues expected to significantly impact
the performance of full applications that employ difference
stencils and the halo exchange.

The hybrid MPI + OpenMP version began with a straightfor-
ward wrapping of the outer-most loop the !$OMP PARALLEL
DO directive. It was also then a straightforward port to Ope-
nACC, replacing this directive with the !$acc parallel
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Fig. 3. Performance of varying miniGhost problems on an XK6 node

loop directive. However, on a node with a memory hierarchy,
such as that on a dual-socket node, the memory affinity
is different: with OpenMP, the arrays should be physically
distributed across the memory hierarchy of the processing
cores (via first-touch) while with a hybrid off-load system, the
entire array should be resident on a single processor’s memory
so that the movement to the device is straightforward. The
MPI-everywhere version automatically maintains processor
core and memory affinity.

The stencil loop required no additional use of OpenMP
directives. The OpenACC version enabled the means for
effectively mapping the data onto the GPU, required to achieve
acceptable performance. The Fermi processor is organized into
16 groups of 32 cores, so a directive is used to map the
computation as x−y slices of GRID to 16 blocks (num gangs),
mapping them each as vectors (vector length) of length 32
onto the 32 core warps.

Single node performance on Curie of the MPI-everywhere,
MPI+OpenMP, and MPI+OpenACC implementations, illus-
trated in Figure 3, shows that the GPU gives a speedup over
the MPI-everywhere ranging from around 25% to 80% as the
amount of work increases. However, if the data to be operated
on must be moved to and from the GPU, the advantage
reverses. The best MPI+OpenMP configuration of 4 MPI ranks
per node each with 4 OpenMP threads outperforms the MPI
version by about 10%, but this quickly reverses as the problem
size increases, with performance decreasing to 80% of the
MPI version. It is beyond the scope of this paper examine this
more closely, though its likely that this is an artifact of the first
generation Interlagos node architecture and thus its reasonable
to expect that it will be addressed in the next generation Trinity
node.

Direct comparison of performance between the host and
device is problematic since memory sizes differ significantly, a
situation common to their sorts of architectures. On Curie, the
GPU device has significantly less memory that that available
to the host (6 GBytes vs. 32 GBytes), and therefore the node
can execute the larger problem shown on the graph while the
GPU cannot. From an application perspective, the ultimate

 0

 1

 2

 3

 4

 5

 6

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

S
p

e
e

d
u

p
 o

v
e

r 
C

P
U

 (
x
)

N

Matrix Assembly
Matrix Generation

CG Solve
Overall

Fig. 4. Speedup of miniFE CUDA Implementation (NVIDIA Fermi M2090
vs. Hex-Core 2.7GHz E5-2680

comparison then is multi-node strong scaling, examined in
Section VI-C1.

2) miniFE on a GPU: MiniFE consists of three principle
phases: generation of the matrix structure, assembly of the
finite-element matrix, and the solution of the sparse linear
system using the Conjugate Gradient method. Here we focus
on key performance limiters in porting the matrix assembly
phase of the algorithm to an NVIDIA GPU using the CUDA
programming model.

The assembly phase involves computing the element oper-
ators for each element and then summing the operators into
a final matrix. We parallelize this phase by having threads
operate on separate elements with the computation of the
element operator and the summation into the linear system
performed within a single kernel. Although the computation of
the element operators is embarrassingly parallel, the summing
into a linear system requires synchronization to avoid data
race conditions. The use of a single kernel is preferred in this
instance because it avoids having to store the state for the
element operator and then having to later re-read that state
during summing into the linear system.

By using one thread per element we were able to leverage
the original code for the construction of the element operator
subject to additions for compilation to a CUDA kernel and
a modification of the code to use the ELL sparse-matrix
representation [7] of the original compressed-row (CSR) form.
Atomic addition operations are employed in the kernel to
prevent race conditions in updating the global matrix.

The computation of the element operator involves a number
of floating-point heavy operations including computing the
matrix determinant and the Jacobian. The large number of
floating point operations suggest that the performance should
be FLOP limited but analysis using NVIDIA’s compute pro-
filer has shown that the performance is in fact bandwidth
bound due to register spilling.

The cause of this register spilling can be identified as the
element operator which requires a large thread state, including
32 bytes for node-IDs, 96 bytes for node coordinates, 512
bytes for the diffusion matrix, 64 bytes for the source vector as
well as data to store the Jacobian and matrix determinant. The



Fermi GPU architecture supports up to 63 32-byte registers
per thread limiting the total register storage to 252 bytes. As
a result of this limit, any additional state must be spilled to
at least L1 cache and potentially further to L2 or memory.
Since the L1 cache can be up to 48kB in size but is shared by
512 threads this can result in as little as 96 bytes of L1 cache
storage per thread. In addition, the L2 cache is 768kB shared
by 8192 threads, again leaving only 96 bytes of storage per
thread. Since L1 and L2 are insufficiently sized to store the
required operator state, registers are spilled to global memory
causing the computation to become bandwidth bound.

One method to improve the performance of bandwidth
bound kernels is to increase the occupancy. However, in this
case, the kernel’s occupancy is limited by register usage. Since
the register usage is higher than is available in hardware it
is not possible to increase this occupancy without further
increasing register spilling.

We tuned the kernel to reduce register usage, including
algorithmic changes that exploiting symmetry in the diffusion
operator and reordering computations so that data is loaded
immediately prior to being used. We have also applied several
traditional optimization techniques including pointer restric-
tion, inlining of functions, and unrolling of loops. Finally, we
also position a portion of the state in shared memory and
experimented with L1 cache sizes. The best performance is
achieved by placing the source vector into shared memory and
enabling a larger L1 cache. Whilst these optimization greatly
reduce register spilling, 512 bytes of state is still spilled per
thread. To ensure fair comparison, all optimizations that were
applicable to the original CPU code were back ported also
improving the CPU performance.

The performance of the CUDA version of miniFE was
compared to the MPI-parallel version of miniFE running on a
Tesla M2090 and a hex-core Intel Xeon 2.7GHz E5-2680. We
tested for various problem sizes of N3 hexahedral elements.
The speedup for each of the three phases of the algorithm is
reported in Figure 4.

The assembly realizes a 4x speedup and the solve phase
is 3x faster. The generation of the matrix structure exhibits a
slowdown because it is computed on the host in CSR format,
transferred to the device, and then converted to ELL format.
Whilst possible to move this computation to the device, the
low proportion of time consumed by these operations does not
dominate performance.

Future generations of NVIDIA systems are expected to
address some of the findings from this study, including an
increased number of registers per thread and increases in the
size of L1 and L2 memories. Improvements in the CUDA
compiler may also lead to a reduction in the number of register
spills or the impact that register spills will have on execution
time.

3) The Impact of Memory Speeds: It is widely accepted
that the performance of the memory sub-systems used in
future exascale computers will improve substantially. This is
driven by a realization that application performance, even on
contemporary systems, is frequently limited by the “memory

wall” [21]. If compute devices experience rapid improvements
in calculation throughput, memory will need to be improved
significantly if applications are not to become entirely throttled
on memory access. However, the question of whether the
improvement in memory performance will exceed or even
match that of compute hardware is still unanswered. Therefore,
there is a very real risk that applications will need to execute
using lower memory bandwidth in the future.

In this section we describe a study in which we alter
the clock rate of memory components in a system through
BIOS control, effectively slowing the rate at which mem-
ory can process requests. This enables an analysis of code
performance where there is a growing divergence between
compute throughput and that of memory (which may be
the effect of significant improvement in compute hardware
that is unmatched by equivalent improvement in memory
subsystems). Table II presents the relative effect on sections of
miniFE and Charon (the parent application to miniFE) runtime
as the clock rate of memory is lowered from 1333MHz to
1066MHz and 800MHz. The processor used for this study is
a dual-socket oct-core AMD Interlagos running at 2.9GHz.
The assembly time in miniFE and the Jacobian generation
of Charon is unaffected by the change indicating that these
sections of code are not predominantly memory bound, whilst
the runtime of the conjugate-gradient (CG) solver increases
by approximately 16% in the 800MHz case. Of interest is that
miniFE is able to closely track equivalent changes in its parent
code for the solve phase (which in both codes is the dominant
contributor to runtime) giving us confidence in the relevance
of our studies using mini-applications.

From this short study we can begin to assess the likely
impact that a reduced per-core memory bandwidth may induce.
A runtime increase of 16% is approximately half of the drop
in memory bandwidth, indicating that miniFE and Charon are
clearly highly sensitive to memory bandwidth in their solve
phases but that some of the bandwidth loss can be covered
either through efficient use of the memory hierarchy or latency
hiding by the processor through the use of prefetching and
deep instruction pipelines.

TABLE II
RELATIVE RUNTIME SLOWDOWN OF MINIFE AND CHARON FROM

REDUCED MEMORY FREQUENCY (RELATIVE TO MEMORY FREQUENCY
OF 1333MHZ, LOWER IS WORSE)

800MHz 1066MHz 1333MHz
miniFE Mini-Application
Finite Element Setup 0.996 1.000 1.000
CG Solve 0.841 0.957 1.000
Charon Device Simulation Application
Prec/Newt 0.960 0.980 1.000
Jac/Newt 1.000 1.000 1.000
Adv/Newt 0.920 0.970 1.000
Solve/Newt 0.840 0.940 1.000

C. Inter-node performance

Our goal of an evolutionary path includes the assumption that
inter-node parallelism will continue, in the foreseeable future,



to be implemented using functionality provided by MPI. (This
does not rule out the use of MPI in a revolutionary approach.)

In this section we explore some issues associated with the
ubiquitous nearest neighbor communication pattern. Our work
is informed by CTH, an explicit three dimensional multi-
material shock hydrodynamics code [18]. CTH models high-
speed hydrodynamic flow and the dynamic deformation of
solid materials, and solves the equations of mass, momen-
tum, and energy in an Eulerian finite volume formulation.
MiniGhost, shown to effectively represent the inter-process
communication requirements of CTH, provides a tractable
means for exploring strategies for improving the performance
characteristics of the full application.

We begin by examining miniGhost on Curie. Next, we ad-
dress a performance issue associated with process-to-processor
mapping, noticeable only at large scales. Then we investigate
an alternative to the very large message strategy implemented
in CTH and many other applications.

1) On the XK6: As shown in Section VI-B1, Curie’s
GPU provides a significant performance capability for the
computation of difference stencils, but the cost of moving
data between the host and device on a node overwhelms the
performance of the computation. To minimize this expense,
all arrays are maintained on the device, and only the halo
is transferred to and from the host for MPI handling. The
MPI+OpenACC implementation uses one MPI rank per node,
a (current) limitation of the OpenACC implementation used
here.

Problem sets were configured to mimic the profiles of CTH.
Weak scaling experiments demonstrate the power of the GPU
in comparison with all of the processor cores for the MPI and
MPI+OpenMP implementations. Strong scaling experiments
were configured to demonstrate the manner in which a domain
scientist would use Curie’s capabilities, highlighting the effects
of maintaining the state on the GPU. Representative results are
shown in Figure 5.

The weak scaling problem involves 16 variables on a
256×256×512 grid per node. This ensures that the MPI and
OpenMP processes on a host node have a reasonable amount
of work (128×128×128 per rank or thread, resp.) while still
allowing that work to fit onto the GPU device. Although the
communication cost dominates the MPI+OpenACC runtime,
the speed of the computation allows it to maintain its advan-
tage over MPI and MPI+OpenMP. However, the gap closes at
higher node counts.

The strong scaling problem involves 20 variables operating
on a 1024 × 1024 × 1024 grid. Most notable is that due
to the GPUs’ memory constraint relative to the host node,
the OpenACC implementation requires a minimum of 32
nodes while the MPI implementations can run on eight nodes.
However, at that scale, the MPI+OpenACC implementation
out-performs the MPI implementation by about 40%. The
MPI+OpenMP implementation becomes competitive with the
MPI implementation at higher node counts, a trend we see for
the strong scaling results as well as in the largest core counts
on Cielo, discussed in the following sections.

The MPI and MPI+OpenMP implementations spent 10-
20% and 5-10% of runtime, respectively, in communication,
highlighting the computational issue for OpenMP. As seen
in the following sections MPI+OpenMP outperforms MPI-
everywhere on Cielo at very high scales. Interprocess commu-
nication is the sum of the work required to move data between
the parallel processes, which includes the time spent packing
and unpacking the message buffers as well as the time spent
in MPI. For the OpenACC implementation, then, this includes
the time spent moving the message buffers and partial sums
between the host and device, resulting in mid-90% proportion
of runtime spent in communication. We optionally aggregated
the variable boundaries into a single array for host-device
movement, but this increased the cost since the individual
transfers could be partially hidden by the packing of the other
buffers. This demonstrates that the data movement is impacted
by the injection rate more than by either latency or bandwidth:
the PCI-e host-device connection is able to inject the transfer
and quickly return to packing the next buffer.

Its important to note that OpenACC is a new specification,
and supporting compilers have only recently appeared. Our
hope is that compilers will improve over time since we found
this programming methodology to be rather easy to use.

2) Mapping processes to processors: CTH provides a typ-
ical example of a code team adapting to computing architec-
tures: in order to avoid message latencies and exploit global
bandwidth, computation is performed across as many variables
as possible before an boundary exchange across those variables
can be consolidated in to a single message per neighbor. But in
a recently completed broad-based study of Cielo capabilities
[19], the nearest neighbor boundary exchange encountered
significant scaling degradation beyond 8,000 processor cores.

The problem was traced to the mapping of the parallel
processes to the three dimensional torus topology. Neighbors
in the x direction required a maximum of one hop and in the
y direction a maximum of two hops. But the number of hops
across the network (referred to as the Manhattan distance)
was shown to increase significantly in the z direction. This
combined with the very large messages of a typical CTH
problem set (e.g. for the “shaped charge” problem, 40 three
dimensional state variable arrays generated message lengths
of almost 5 MBytes) resulted in poor scaling beginning at 8k
processes, a trend that accelerated after 16k processes.

In response, we implemented a means by which the parallel
processes could be logically re-mapped to take advantage of
the physical locality induced by the communication require-
ments. In the normal mode, CTH (and miniGhost) assigns
blocks of the mesh to cores in a manner which ignores the
connectivity of the cores in a node. On Cielo, as with other
Cray X-series architectures, cores are numbered consecutively
on a node, and this numbering continues on the next node.

Blocks of the mesh are distributed to the processors row by
row. Starting in one corner of the mesh, first in the x direction,
then moving in the y direction for the next row, and then in
the z direction when all of the blocks in a plane are assigned.
This process continues until all of the blocks are assigned to
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Fig. 5. Strong and Weak Scaling of miniGhost on XK6

Number of Regular Order Reordered
MPI ranks X Y Z X Y Z

16 0.0 0.0 0.0 0.0 0.0 0.0
32 0.0 0.0 0.0 0.0 0.0 0.0
64 0.0 0.0 0.3 0.0 0.3 0.0
128 0.0 0.0 1.0 0.0 0.5 0.0
256 0.0 0.0 1.0 0.0 0.5 0.3
512 0.0 0.1 2.0 0.0 0.6 0.4

1024 0.0 0.3 2.1 0.2 1.0 0.7
2048 0.0 0.3 2.7 0.3 1.2 1.2
4096 0.0 0.3 3.7 0.3 1.2 1.2
8192 0.0 0.5 5.1 0.2 1.1 2.0
16384 0.0 0.5 4.9 0.2 1.1 2.2
32768 0.0 0.5 5.6 0.2 1.1 2.5
65536 0.0 1.1 10.2 0.2 1.6 2.8

131072 0.0 1.1 10.1 0.2 1.6 3.1

TABLE III
MINIGHOST AVERAGE HOP COUNTS ON CIELO

processors.
Our remapping algorithm assigns blocks of the mesh to

the cores of the machine by groups. On Cielo, a group of
blocks consists of a 2× 2× 4 group of blocks. These blocks
are then assigned to nodes as above. The result is a slight
increase in the average hop counts in the x and y directions,
but a significant decrease in the average hop count in the z
direction. A comparison of the number of hops between the
two approaches is shown in Table III.

This remapping strategy results in a significant improvement
in scaling performance, illustrated in Figure 6(a). Figure 6(b)
shows that this is attributable to controlling the time spent
sending data in the z direction. We include the time spent
in the reduction sum across each grid variable (inserted after
computation on each variable to add application realism as
well as a synchronization point), illustrating that this func-
tionality is not the source of the issue, scaling well regardless
of the processor mapping. We do see indications of the issue
at the highest processor counts, though it is less pronounced.

As discussed in the related work section above, we are ex-
ploring ways for incorporating these ideas into a more general
interface. We are also exploring the use of MPI_Datatype
in handling the non-contiguous (but patterned) face data.

3) Alternative communication strategies: Node intercon-
nects are also evolving, driven by new node architectures
as well as cost and energy conservation goals, encouraging
exploration of new approaches within the context of applica-
tion requirements. Interconnects are designed as a balance of
global bandwidth (the ability of the interconnect to move data),
inject bandwidth (the ability of the NIC to put data onto the
interconnect), and injection rate (the ability of a node to place
messages onto the NIC). Global bandwidth typically incurs the
highest costs, both in terms of money and power consumption,
and therefore we are preparing for a proportional decrease in
that capability.

MiniGhost includes an application-relevant infrastructure
for exploring alternative boundary exchange configurations
[6]. The configuration used above mimics that of CTH, which
we call Bulk Synchronous Parallel with Message Aggregation
(BSPMA). The second, called Single Variable Aggregated
Faces (SVAF) transmits data as soon as computation on a
variable is completed, and thus six messages are transmitted
for each variable (up to 40), one to each neighbor, each time
step. The two x− y faces are contiguous in memory, so each
may be directly sent using a call to a single MPI function.
The other four faces are aggregated into buffers, resulting in
four messages to their neighbors. A third mode, called single
variable, contiguous pieces, computational overlapping mode
(SVCP), is designed for use on architectures that are strongly
biased toward significantly increased message injection rates
and injection bandwidth, a trend we see developing but not
yet to the extent of supporting this configuration using MPI
[25].

BSPMA and SVAF have been configured for MPI-
everywhere as well as MPI+OpenMP. For the latter on Cielo
and Curie, its best configuration is four MPI ranks on each
node, each spawning four OpenMP threads. Note that this in-
creases the size of each message in comparison with the MPI-
everywhere version. Performance of these implementations on
Cielo are shown in Figure 7. Effective mapping of processes
to processors is again critical to achieving good scaling, and
as the number of processors increases, SVAF becomes the best
strategy. This is of significant interest since it reduces demand
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on costly global bandwidth by a factor of N , where N is
the number of variables aggregated (40 for the shaped charge
problem).

VII. CONCLUSIONS AND FUTURE WORK

With the goal of enabling an effective piecewise evolutionary
path to making effective use of Exascale computing architec-
tures, we described our explorations of a breadth of issues
throughout the codesign space. While faced with uncertain
choices of programming models, mechanisms, and perhaps
languages designed to run in an uncertain computing environ-
ment, we have demonstrated a variety of ways the application
developer can begin to concretely and effectively prepare for
an unknown specific machine but a widely accepted architec-
tural approach. Although this work is presented in terms of
processor, node, and inter-node strategies, we also see that a
system-wide design is required to achieve overall reductions
in runtime. The common theme is, not unexpectedly, the
organization of our data and the way it is moved around
and presented to the various components of the architecture.
Most reassuring in terms of modifications to large code bases,
we have demonstrated an evolutionary path that can also
significantly improve performance on current and emerging
architectures. Additional information in support of this paper
is presented in [5], and deeper studies on some of the topics
herein will be presented in papers in preparation.

Our use of miniapps significantly improves our ability to
rapidly explore ideas, and these miniapps have been demon-
strated to be predictive of full application codes with regard
to some key performance issues [4], guiding our focus here.
For example, the remapping strategy has proven beneficial to
CTH. That said, we reiterate that the output of a miniapp is
information that must be interpreted within the context of the
full application, and therefore the application developer must
apply and probably extend the experiences described in this
paper.

We are also studying revolutionary options, including less
commonly used and new languages (e.g. [9], [10], [22], [26]).
It is also possible that a completely new architecture could
emerge from the exascale initiatives. Regardless, it appears that
the fundamental concepts for exploiting these architectures
will remain: presenting data to the compute engine in a
manner that allows it to operate on the data in a vectorized
multi-threaded fashion, sharing that data with the parallel
processes in efficient ways and exposing sufficient parallelism
to effectively hide ever-increasing relative latencies. The lesson
learned from our incremental evolutionary approach will not
only help applications in the near to medium term, but
also set the stage for a smoother transition to revolutionary
environments.
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